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1 LPCES UMR CNRS-UPS 8648, Université de Paris Sud, 91405 Orsay Cedex, France
2 Alcatel CIT, 7-9 Avenue Morane Saulnier, BP 57 78141 Vélizy, France

Received 25 July 2005, in final form 11 January 2006
Published 2 February 2006
Online at stacks.iop.org/JPhysCM/18/2199

Abstract
The requirement from the industry of precise lifetime estimation of Bragg
gratings in optical fibres and other optical devices motivated us to perform
calculations in a region of a master curve (describing the time evolution of
a system at any temperature) where an approximation, called demarcation
energy, is no longer valid. We describe a correction procedure that leads to
reintroducing afterwards a temperature dependence lost in this approximation
while preserving most of the advantages of the demarcation energy approach.
With our procedure, a precise determination of burning-in parameter for
achieving lifetime specification is possible.

A Bragg grating written in H2 loaded Ge doped silica core optical fibres is
used as application example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The development of Bragg gratings inscripted in optical fibres by means of a UV laser is an
important breakthrough in optical fibre communication in the last few years. After various
trials for enhancing the photosensitivity in optical fibres, the industrials have converged at the
moment on the writing in optical fibres with a H2 loaded Ge doped silica core, awaiting further
improvement from basic research. Meanwhile, it seems necessary to improve the estimate
of the lifetime from a wealth of experimental data which is available with ever increasing
precision.

For modelling the relaxation process in disordered media, several approaches can be used;
an extended report can be found in the reference book of Richert and Blumen [1]. The
main problem that one encounters in each of these approaches is to account for the effect
of disorder on the relaxation processes. Indeed, the disorder can affect the various steps of a
physico-chemical reaction, allowing the relaxation of the observed quantity. For instance, if
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hopping is considered in a reaction, the disorder will appear on the hopping distance or on the
waiting time. On the other hand, if an energy barrier is involved, the activation energy will be
distributed because the transition and/or the stable state configurations are numerous. These
two examples differ fundamentally on one point: the temperature will affect the range limited
or the temperature activated hopping differently. In particular, the dependence of the stability
of the refractive index with the writing or the ageing temperature [2] can only be explained by
processes with distributed activation energies. Other arguments connected to structural changes
also reinforce this conclusion. However, a process like decoration of network defects with
hydrogen atoms will not necessarily be relevant to a thermally activated process and exponents
appearing in non-exponential laws like the stretched exponential will be related in this case to
the fractal nature of the defect structure space. In this paper, we consider only those relaxation
processes involving distribution of activation energies. As it is seen, this approach yields good
results [3, 4] in problems of index change.

The method now widely used in the field of optical fibres introduced by Lemaire et al
in 1984 [5] for hydrogen induced darkening and by Erdogan et al in 1994 [3, 6] for Bragg
grating stability has its foundation in numerous previous works which began with the study of
the electric discharge in a Leyde jar due to Kohlrausch in 1847 [7]. He found a stretched
exponential behaviour with an exponent of 0.43. Later in 1876, Hopkinson [8] proposed
another relaxation function for a dielectric: Bt−n . In 1893, Wiechert [9] suggested that
relaxation energies in solids are distributed according to a Gaussian curve. In 1907, Von
Schweidler [10] introduced the concept of relaxation time. In 1913, Wagner [11] suggested
that the relaxation time was governed by a probability function which he assumed to have
a Gaussian line shape distribution. At this juncture, Vand [12] proposed two experimental
methods for studying the activation energy distribution (of what he called ‘lattice distortions’,
actually): the isothermal and tempering annealing. He defined a cutting energy for an energy
distributed first order kinetics and showed that the distribution function is the derivative of
the produced quantity according to this energy; he also studied the error introduced by this
approximation. This was an important step forward in the study of disordered media but the
role of the demarcation energy remained eluded and so also a correction method. In 1955,
Primak [13] extended the Vand approach by defining a ‘characteristic activation energy’ (in
fact, what will be called the demarcation energy later) and extended the field of application to
investigate kinetics with order larger than one, but he noted that the first order kinetics is the
most likely scenario in solids. In 1960, Primak [14] continues studying the isochronous method
which was an improvement over the Vand method. He made many investigations in silica,
especially about radiation induced compaction or dilatation. Since then, several publications
dealing with distributed kinetics have appeared in the literature but without any mention of the
original works. Tiedje et al (1980) and Orenstein et al (1981) [15, 16] invoked a demarcation
energy which is actually the Vand cutting energy. In 1991, Miller [17] developed a predictive
formalism to describe generalized activated physical processes. In 1992, Lemaire [18], and in
1994, Erdogan [3, 6], applied it to optical fibres. In 1996, Van den Brink [19] defined a master
curve in viscoelastic relaxation in using several Maxwell elements (simple exponentials). In
1997, Kannan et al [20], use this master curve concept for predictive ends in optical fibres.

As we have already reported in several communications, most of them unpublished [21],
the physical assumptions of our approach are the following. The ageing can be described
very often by (i) a single one-order physico-chemical reaction (ii) thermally activated for
which (iii) the activation energy is distributed according to a distribution function g(E)

(iv) independent of the temperature. Then, a simplifying approximation can be used that is
called the demarcation energy approximation for computing the relevant physical quantity as
a function of time and temperature. A general mathematical procedure is described in [22]. It
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is based on the hypotheses (ii)–(iv). This description is phenomenological and is in fact not
directly related to the physical processes. For industrial purposes, it works nicely although
it describes only one aspect of the problem: the time optimization. For understanding a link
between grating elaboration and lifetime, it is necessary to use an analytical approach close to
the physical processes. However, this approach suffers from a defect arising from the assumed
approximation of demarcation energy. Here, we report a procedure which overcomes some of
the restrictions limiting the usefulness of this framework in industrial applications.

For better understanding of the problem, we chose the example of the ageing of the index
change induced using the photosensitivity of H2 loaded germanosilicate core optical fibres. We
have shown in a previous publication that a top hat distribution g(E) can be used for modelling
the distribution function and for computing the refractive index change �n(t, T ) with time t
and temperature T [4]. The integration of this distribution gives rise to the following analytical
function when using the demarcation energy approximation that simulates the experimental
results almost entirely:

�n(t, T ) =






�n0 for Ed < Emin

�n0
Emax − Ed

Emax − Emin
for Emin < Ed < Emax

0 for Emax < Ed

(1)

where Ed = kBT ln(k0t) is the so-called demarcation energy, kB being the Boltzman constant,
�n0 is the strength of the index change before ageing, Emin and Emax two energies delimiting
the variation of the step-like distribution function, and k0 the pre-exponential factor of the rate
constant of the virtual reaction related to refraction index change relaxation.

Emin, Emax, k0 are obtained by fitting the experimental database i.e. the set of experimental
data measured previously in an accelerated ageing experiment with equation (1) (see figure 1).
The problem in this case is that the experiment does not show an angular point at around Emin

as it does in the theory. There would be the same observation if we had the data around Emax

also. Actually, the experiment is differentiable but not the model. This is not so awkward for
the determination of some burning in conditions (although it is not exact). However, this is
really a problem for the qualification of device lifetime since the region around the angular
point near Emin will be a detrimental factor for the calculation (see figure 1). As a matter of
fact, the acceptable decrease of a grating strength over 20–25 years is 1% and this is of the
order of the error made using the demarcation energy approximation. What we can see also is
that the experimental curve shape according to Ed depends on the annealing temperature which
is not included in the model as it can be seen that equation (1) is not depending on T explicitly,
though an implicit T dependence comes through Ed. This observation is in fact beyond the
approximation of demarcation energy beyond the concept of a master curve [20].

It is thus necessary to correct the defect in this approach and we propose an analytical
procedure in this paper for performing more precise estimates applicable to any energy-
distributed processes but keeping most of the advantages of the demarcation energy
approximation. Our procedure can thus be viewed as a correction to the demarcation energy
approximation. In the course of this paper, we will also shed light on a few tricky points about
master curve building that are usually ignored.

2. Theory

2.1. The limit of the approximation

The modelling of the stability of the physically relevant quantity, i.e. the refractive index in this
paper, is considered proportional to a species B fulfilling the following hypotheses:
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Figure 1. Experimental data set of NICCs (the normalized integrated coupling constant is
Arc tan

√
R(t,T )

Arc tan
√

R(t=0)
with R the reflectivity of the grating in consideration, i.e. the normalized refractive

index change) plotted against demarcation energy using an optimized k0 constant in order to obtain,
as best as possible, the collapse of the data set, whatever the time t and the temperature T , into
only one curve called the master curve. The example considered here is a type of H2 loaded
germanosilicate core optical fibres slightly different from the one used in (4). For this example,
k0 = 6 × 1011 s−1, Emin = 1.34 eV, and Emax = 2.84 eV. Graph (b) is a magnification of graph (a)
around the knee of the curve.

(i) it occurs in a reaction B → A that is dominant in a likely complex process,

(ii) this erasing reaction is thermally activated,

(iii) the rate constant of this reaction is k = k0 exp(−E/kBT ),

(iv) the activation energy E is distributed according to a distribution function g(E) which is
normalized, i.e.

∫ ∞
0 g(E) dE = 1,

(v) the reaction is of first order (although this last condition can be relaxed in some cases).

The quantity B relevant to index change is thus expressed as:

B(t, T ) = B0

∫ ∞

0
g(E)η(t, T, E) dE
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Figure 2. Scheme of decay curve η against the activation energy.

where B0 is the value of B at t = 0, and η(t, T, E) is the decay function of the erasure reaction,
i.e. the remaining B fraction that can decay through the pathway of activation energy E :

η(t, T, E) = exp(−k0t exp(−E/kBT )).

This function is a very steep function of E , commuting from 0 to 1 when E passes through a
value Ed called the demarcation energy [21] (see figure 2).

Ed is correctly defined by the position of the inflexion point of η versus E . Thus, it is
defined by the following equation [16]:

∂2η

∂ E2

∣
∣
∣
∣
t,T

= 0. (2)

For the expression of η here considered, we have Ed = kBT ln(k0t). Note that Ed has a different
expression for second order kinetics or for reversible reactions; see [23], for instance.

We note that for t = 0, Ed = −∞, contrary to the activation energy which is always
positive. However, Ed = 0 for a very small value of t (i.e. 1/k0) that can be considered as the
initial moment of the ageing.

Then, B(t, T ) can be approximated by b(t, T ) = B0
∫ ∞

Ed
g(E) dE = b(Ed) taking

advantage of the above properties of η.3 Here, we can note that function b depends only on
Ed, that connects to the variables t and T . This is the practical way for analytical computation
of b(Ed) which will be fitted afterwards to a experimental B(t, T ) data set. From that point,
if we differentiate b(Ed), we obtain db

dEd
(Ed) = −B0g(Ed) and thus this expression is used

for finding g(E) and for calculating the analytical expression of b(t, T ), which can be used
to fit the experimental data set in the first approximation. But b(t, T ) is really very close to
B(t, T ) only if | dg

dE | � | ∂η

∂ E |t,T for any E . For instance, this is not at all the case when the
energy is not distributed, i.e. when g(E) is equal to a Dirac function δ(E − E0) (single reaction
pathway). Furthermore, even if g is constant like the case considered in section 1, we have
B−b
B0

= −γ gkBT (γ : the Euler constant ≈0.577) which is a small4 but T -dependent term. The

3 b(Ed) − B(Ed, T ) < γ B0kT/(Emax − Emin) with γ = 0.577, in the case of a top hat distribution as we will see
later in the paper.
Otherwise,

B(Ed, T ) − b(Ed)

B0
=

∫ ∞

0
g(E)η(Ed, T, E) dE −

∫ ∞

Ed

g(E) dE

=
∫ ∞

Ed

g(E)[η(Ed, T, E) − 1] dE +
∫ Ed

0
g(E)η(Ed, T, E) dE.

The integrands of the two last integrals are localized very closely to Ed and a second order approximation
is possible. In particular, if we assume g(E) = g(Ed) on a sufficiently large range around Ed, we have
B(Ed,T )−b(Ed)

B0
= g(Ed)

∫ ∞
Ed

[η(Ed, T, E) − 1] dE + g(Ed)
∫ Ed

0 η(Ed, T, E) dE which is analytically computable and
equal to −γ kBT g(Ed).
4 With our experimental results, (B − b)/B0 = −2% ± 1%, g = 1/1.5 eV−1, kBT (300 K) = 1/40 eV.
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E

g*(E,T)

2kBT

Figure 3. Convolution of Dirac function (the true function) for obtaining the experimental
distribution function.

amplitude of the T dependence is of the order of the specification of decrease after 25 years.
The appearance of a T dependence is normal because when b(Ed) does not depend on T , B is
not only Ed dependent but also T dependent. This is shown in the next section.

The problem having been expressed, we now describe below a procedure for correcting
the error introduced in the demarcation energy approximation while preserving most of the
advantages of this approximation.

2.2. To overcome the approximation limitation: definition of the experimental activation
energy distribution function

Despite the problem described above, we can differentiate B(t, T ) versus Ed. Let us note for
this purpose that η(t, T, E) = exp(−k0t exp(−E/kBT )), replacing t by its expression as a
function of Ed as defined from equation (2), we get

η(t, T, E) = η(Ed, T, E) = exp(− exp((Ed − E)/kBT )) = η∗(Ed − E, T )

where η∗(E∗, T ) is the formal function exp(− exp(E∗/kBT )) with E∗ a symbolic variable.
We have:

B(t, T ) = B(Ed, T ) = B0

∫ ∞

0
g(E)η∗(Ed − E, T ) dE .

Here, we note that B(Ed, T ) is the convolution of g(E∗) with η∗(E∗, T ) with E∗ a symbolic
variable assuming that g(E) = 0 for E < 2kBT . The differentiation leads therefore to:

∂ B

∂ Ed

∣
∣
∣
∣
T

(Ed, T ) = B0

∫ ∞

0
g(E)

∂η∗

∂ E∗

∣
∣
∣
∣
T

(Ed − E, T ) dE = B0

(

g∗ ∂η∗

∂ E∗

∣
∣
∣
∣
T

)

(Ed, T ).

By analogy with db/dEd, we can see that the partial differentiation of experimental data set (B)

at constant T results in an experimental distribution g∗(E, T ) = −(
g∗ ∂η∗

∂ E∗
∣
∣
T

)
(E, T ), i.e. the

true distribution g convoluted by − ∂η∗
∂ E∗

∣
∣
T

.
For example, if one considers g(E) = δ(E − E0) (unique activation energy or single

reaction pathway), the experimental distribution g∗(E, T ) will be

g∗(E, T ) = − ∂η∗

∂ E∗

∣
∣
∣
∣
T

(E − E0, T ) = η∗(E − E0, T )
1

kBT
exp

(
E − E0

kBT

)

(3)

i.e. an asymmetrical bell shaped curve with a width of ≈2kBT (see figure 3).
Important note: we remark here that − ∂η∗

∂ E∗
∣
∣
T

is not only a function of E∗ but also of T .
g∗(E, T ) is therefore also dependent on T . This stands therefore beyond the master curve
approach. Note that if g(E) is the physical distribution which yields B(Ed, T ) after exact
integration, g∗(E, T ) is a corrected distribution which allows using the demarcation energy
approximation.
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As a matter of fact, reciprocally, for computing an analytical expression for B(Ed, T ) (let
us call it B̃(Ed, T )), we would like to use the demarcation energy method knowing g∗(E, T ).
We have to note that
∫ ∞

Ed

g∗(E, T ) dE =
∫ ∞

Ed

−
(

g∗ ∂η∗

∂ E∗

∣
∣
∣
∣
T

)

(E, T ) dE

=
∫ ∞

Ed

dE
∫ ∞

0
−g(E ′)

∂η∗

∂ E∗

∣
∣
∣
∣
T

(Ed − E ′, T ) dE ′

=
∫ ∞

0
dE ′ g(E ′)

∫ ∞

Ed−E ′
− ∂η∗

∂ E∗

∣
∣
∣
∣
T

(E∗, T ) dE∗

︸ ︷︷ ︸
=−η∗(∞,T )+η∗(Ed−E ′,T )

=
∫ ∞

0
g(E ′)η∗(Ed − E ′, T ) dE ′ −

∫ ∞

0
g(E ′)η∗(∞, T ) dE ′

︸ ︷︷ ︸
=0 because η∗(∞,T )=0

= B(Ed, T )

B0
.

It is worth noting that we can obtain in such a way a theoretical expression B̃ for the
experimental data set B if g∗(E, T ) deduced from the differentiation of the data set has been
analytically modelled.

In particular, considering g(E) = δ(E − E0) we deduce using equation (3) the following:

B̃(Ed, T ) = B0

∫ ∞

Ed

g∗(E, T ) dE

and thus

B0

∫ ∞

Ed

− ∂η∗

∂ E∗

∣
∣
∣
∣
T

(E − E0, T ) dE = B0η
∗(Ed − E0, T )

= B0

∫ ∞

0
δ(E − E0)η

∗(Ed − E, T ) dE)

which is exactly the expression of B(Ed, T ).
We conclude therefore that the use of g∗(E, T ) extends the validity of the demarcation

energy method to any kind of distribution providing that it does not approach E = 0 close to
2kBT .

3. Application

The method that we suggest using is the following. It runs in four steps.

(1) Application of demarcation energy approximation to the experimental data set B(Ed, T ).
We get a master curve with some remaining T dependence and then the experimental
distribution g∗(E, T ).

(2) A physical distribution g(E) can be deduced from g∗(E, T ) = −(
g∗ ∂η∗

∂ E∗
∣
∣
T

)
(E, T ).

(3) The modelling of g∗ gives rise by analytical integration to analytical B̃(Ed, T ) and the
modelling of g(E) gives rise to b(Ed), both containing adjustable parameters.

(4) Adjustable parameters are fixed by fitting the experimental data set B(Ed, T ) with
B̃(Ed, T ) or with b(Ed).

Here is an example of the application of this procedure to the case of the stability of a Bragg
grating written in a H2 loaded Ge doped silica core optical fibre.
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T dependent

g(E)g*(E,T)

Emin Emax E

Figure 4. The experimental distribution function g∗(E, T ) conjugated to the top-hat function g(E).
Note the disymmetry at the edges.

Step 1. In the case mentioned above, the distribution function is suggested to be a top hat,
like the following:

g(E) =






0 for E < Emin

1

Emax − Emin
for Emin < E < Emax

0 for Emax < E

where Emin, Emax are the lower and higher bound of the function, respectively (see figure 4).
Step 2. The experimental distribution is then:

g∗(E, T ) =
∫ ∞

0
−g(E ′)

∂η∗

∂ E∗

∣
∣
∣
∣
T

(E − E ′, T ) dE ′

= −
∫ Emax

Emin

1

Emax − Emin

∂η∗

∂ E∗

∣
∣
∣
∣
T

(E − E ′, T ) dE ′

= 1

Emax − Emin
(η∗(E − Emin, T ) − η∗(E − Emax, T )).

This is shown in figure 4.
Step 3. Let us compute B̃(Ed, T ) now; we have:

B̃(Ed, T ) = B0

∫ ∞

Ed

g∗(E, T ) dE

= B0

Emax − Emin

(∫ ∞

Ed

η∗(E − Emin, T ) dE −
∫ ∞

Ed

η∗(E − Emax, T ) dE

)

= B0
Imax(Ed, T ) − Imin(Ed, T )

Emax − Emin

Imin(Ed, T ) =
∫ ∞

Ed

exp

(

− exp

(
E − Emin

kBT

))

dE .

Making the following variable change:

y = exp

(
E − Emin

kBT

)

,

we get:

Imin(Ed, T ) = kBT
∫ ∞

exp(
Ed−Emin

kB T )

exp(−y)

y
dy = kBT E1

(

exp

(
Ed − Emin

kBT

))

where E1 is the Euler integral.
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So, B̃(Ed, T ) is thus:

B̃(Ed, T ) = B0kBT

Emax − Emin

[

E1

(

exp

(
Ed − Emax

kBT

))

− E1

(

exp

(
Ed − Emin

kBT

))]

= B0kBT

Emax − Emin
I (Ed, T ).

The difference I (Ed, T ) can be reorganized using the series expansion [24]

E1(x) = −γ − ln(x) −
∞∑

n=1

(−1)n xn

n.n!
where γ is the Euler constant5.

We get:

I (Ed, T ) = Emax − Emin

kBT
+

∞∑

n=1

(−1)n

n.n! exp

(
nEd

kBT

)[

exp

(

− Emin

kBT

)

− exp

(

− Emax

kBT

)]n

.

Therefore

B̃(Ed, T )/B0 = 1 + kBT

Emax − Emin

∞∑

n=1

(−1)n

n.n! exp

(
nEd

kBT

)[

exp

(

− Emin

kBT

)

− exp

(

− Emax

kBT

)]n

.

Let us study the behaviour of B(Ed, T ) around Emin now, and for that purpose let us state
Ed = Emin + δE ; we get:

B̃(Ed, T )/B0 = 1 + kBT

Emax − Emin

∞∑

n=1

(−1)n

n.n! exp

(
nδE

kBT

)[

1 − exp

(

− Emax − Emin

kBT

)]n

.

But in our case

Emax − Emin

kBT
� 1 ⇒ exp

(

− Emax − Emin

kBT

)

� 1

and so:

B̃(Ed, T )/B0 = 1 + kBT

Emax − Emin

∞∑

n=1

(−1)n

n.n! exp

(
nδE

kBT

)

. (4)

When δE < 0, exp( δE
kB T )n →n→∞ 0 and so B̃(Ed, T )/B0 → 1 when δE departs from 0

on the negative side. Computation shows that this is achieved in a few kBT and for a moderate
number of terms (see figure 5): less than eight.

When δE = 0,
∑∞

n=1
(−1)n

n.n! = −E1(−1) − γ = −0.804 < 0 and thus B̃(Emin,T )

T B0
=

1 − 0.804 kB T
Emax−Emin

.
However, when δE > 0, the convergence is different and another approximation has to

be used. As we can see in figure 1, the curve B(Ed, T )/B0 approaches a straight line with
equation 1 − Ed−Emin

Emax−Emin
= Emax−Ed

Emax−Emin
. Here, the quantity Ed that we can call the experimental

demarcation energy contains a k0 term fitted on the data.

However, when we compute the difference between B̃(Ed,T )

B0
and b(Ed)

B0
= Emax−Ed

Emax−Emin
, we find

not zero for δE > 0 but something slightly different. We have

B̃(Ed, T )

B0
− Emax − Ed

Emax − Emin
= δE

Emax − Emin
+ kBT

Emax − Emin

∞∑

n=1

(−1)n

n.n! exp

(
nδE

kBT

)

5 γ = 0.577, E1(1) = 0.227, E1(x) −→x→0 − ln(x) − γ, E1(x) −→x→+∞ 0.
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Computation convergence
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Figure 5. Number of terms required for a precision of 10−4 in the normalized B concentration
calculation.

or
B̃(Ed, T )

B0
− Emax − Ed

Emax − Emin
= kBT

Emax − Emin

(
δE

kBT
+

∞∑

n=1

(−1)n

n.n! exp

(
nδE

kBT

))

= − kBT

Emax − Emin

(

γ + E1

(

exp

(
δE

kBT

)))

−→
δE>kB T

−γ
kBT

Emax − Emin
.

This discrepancy is rather small, i.e. about 5 × 10−3 per 100 K, but it is T dependent.
B̃(Ed, T ) tends therefore to a temperature-dependent function of demarcation energy Ed. This
means that the isotherms are no longer coincident as is exemplified in [25] and isochrons
are no longer linear curves as in the crude model. However, in our particular case, this
discrepancy can be integrated in k0. This induces a change of theoretical k0 into k0 exp(γ ),
i.e. a multiplication by 1.78. Therefore, it is better to change the variable from Ed to
E ′

d = Ed + γ kBT = kBT ln(exp(γ )k0t) already in B̃ and to plot the data B versus E ′
d in order

to minimize the effect of T and to stay as closer as possible to the master curve approximation.
From an analytical point of view, this does not change anything in the analysis procedure and
the experimental data can still be fitted with the same type of function but the theoretical k0 is
1.78 times smaller.

More important is the curve knee approximation. We can see in figure 6 that the limited
series we have used converges rapidly in one kBT on the positive side of the activation energy
departure from Emin. At this demarcation energy departure, we find in figure 5 that 13 terms
are necessary for a precision of 10−4. Therefore, the practical expression to use for B̃(Ed, T )

is:

B̃(Ed, T )/B0 = 1 + kBT

Emax − Emin

13∑

n=1

(−1)n

n.n! exp

(
n(Ed − Emin)

kBT

)

. (5)

This can be computed rapidly with any software (we did it with the help of Mathcad©

software; the calculation time is less than one second). For demarcation energy above
Emin + kBT , the classical expression has to be used, i.e. b(E ′

d)

B0
= Emax−E ′

d
Emax−Emin

with E ′
d =

kBT ln(exp(γ )k0t) = Ed + γ kBT .
In addition, for sake of programming simplicity, it is possible to use the expression (5) for

the negative side and to consider the function equal to 1 for Ed < Emin − 4kBT .
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Finally, we notice that, in using E ′
d, the linear part appears to be independent but not the

knee, which is more softened as the temperature increases.
Step 4. Finally, we have fitted k0, Emin and Emax on the data set shown in figure 1 and we

have found the same values as before but this time with an additional factor 1.78 corresponding
to exp(γ ). From that result, we plotted the simulation for comparison (figure 7). We now have
a curve for activation energy located around Emin that it is similar to the experimental results.

4. Discussion

4.1. Lifetime calculation after elaboration

Now, we have a more precise stability function for fitting our data and performing lifetime
prediction after elaboration. For the discussion here, we consider that the physical distribution
is a top-hat function at the end of the writing process. The first knee on the curve is thus
softened only by the nonzero temperature of the work specification. We can discuss the error
we made before, using the linear approximation with the unconvoluted top-hat function.

When one wishes to make an estimate of lifetime for a relative decrease ε, i.e. 1 − B/B0

after a time t at Tw (work temperature) defined by B(t,Tw)

B0
= 1 − ε, there are two cases. If

ε is large enough such that B(t,Tw)

B0
falls at position 1 in figure 8 with lifetime t1, there is no

error because B/B0 follows the linear behaviour for which the correction (as shown above) has
no effect and the simplest theory is applicable. However, if ε is small, it falls at position 2
in figure 8 with lifetime t2 according to the crude theory, instead of being at position 3 with
lifetime t3. The lifetime is thus overestimated. The overestimate is obtained by solving the
following set of equations:

B

B0
(t3, Tw) = 1 − ε = b(t2, Tw)

B0
.

The error (of the order of 2 × 10−2 eV) corresponds to kBT (ln(t3) − ln(t2)) and thus to a
time reduction factor of about 2 at room temperature. The lifetime has thus been overestimated
by twice its actual value.
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MASTER CURVE T3 filters
k0*exp(γ)=k0*1,78=6.E+11s-1, Emin=1,34 eV, Emax=2,84 eV
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Figure 8. Positions of the grating strength according to the different treatments or specifications.

4.2. Lifetime mastering, determination of burning in

For mastering the lifetime in distributed activation energy systems, a method consists in
performing accelerated ageing. In such a way, the less stable part of the system is erased.
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The annealing is adjusted in order to obtain a remaining part of the system that is stable for the
specified period. For calculating properly the annealing duration, we have to take into account
that the distribution function is changed by the annealing treatment at temperature Ta during
a time ta. We will call the B and b functions after annealing B1 and b1. They are related to
the new stability curve of the system according to the time set to 0 just after the end of the
annealing period.

The equations for following the evolution beyond the end of the annealing and beginning
of ageing afterwards are:

B1(0, Tw)

B0
= B(teq, Tw)

B0
= B(ta, Ta)

B0

where teq is an equivalent time at Tw corresponding to a decay achieved at Ta during ta. For
fixing the lifetime t1 at Tw according to the annealing parameters (ta, Ta), we have to solve the
following equation:

B1(t1, Tw)

B0
= (1 − ε)

B1(0, Tw)

B0
. (6)

This translates a decay of amplitude ε of the system after burning in.

Using the b(Ed) approach. For the stepwise distribution and for the crude model, the
corresponding equations above are obtained just by replacing B by b. We get:

b1(0, Tw)

B0
= b(teq, Tw)

B0
= b(ta, Ta)

B0
and

b1(t1, Tw)

B0
= (1 − ε)

b1(0, Tw)

B0

b1(E ′
d)

b1(0)
=






1 for E ′
d < kBTa ln[exp(γ )k0ta]

Emax − E ′
d

Emax − kBTa ln[exp(γ )k0ta] for kBTa ln[exp(γ )k0ta] < E ′
d < Emax

0 for Emax < E ′
d

with E ′
d = kBT ln(k0t exp(γ ))

b1(E ′
d) is obtained

(i) by changing Emin, into kBTa ln[exp(γ )k0ta] in b(E ′
d) as the annealing has removed the less

stable sites of the distribution, and
(ii) by renormalizing by b1(0).

The time teq is a much longer period of time at Tw corresponding to the annealing during ta
at Ta. It is obtained here by E ′

d(ta, Ta) = E ′
d(teq, Tw) as function b depends only on E ′

d (see
figure 9).

Then, after annealing, the lifetime for a further decrease in b/B0 of ε should be computed
at Tw again. This, however, is a straightforward task after teq determination by solving the
equation for b1.

Once the annealing is done, one wants to cross check if the measured lifetime is actually
what has been computed. At that time usually, just after the burning in, the time scale is set
again to zero and a new master curve is plotted. We have to be aware that this time scale shift
modifies the stability curve.

Its shape is obtained by setting the time to zero after annealing at the beginning of the
ageing experiment and in plotting b1(t1, Tw)/b1(0, Tw) according to the new demarcation
energy E ′′

d = kBTw ln(exp(γ )k0t1), where t1 is the new time scale with t1 = t − teq as in
figure 9. The b1(t1, Tw)/b1(0, Tw) function will be thus transformed into:
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Figure 9. Lifetime estimate after an annealing treatment using the master curve before annealing in
the case of the crude model.
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called on the graph Bnordec(Ed2). We can see that the change of the time origin leads to a curve
exhibiting again a softened knee.

b1(E ′
d)

b1(0, Tw)
= b1(kBTw ln(exp(γ )k0t))

b1(0, Tw)
= b1(kBTw ln(exp(γ )k0(t1 + teq)))

b1(0, Tw)

= b1
(
kBTw ln

(
exp

( E ′′
d

kB Tw

) + exp(γ )k0tw
))

b1(0, Tw)
= b1(E ′′

d )

b1(0, Tw)
.

The result is plotted in figure 10.
For t1 � teq, the change of b1 value is small, but not for t1 ≈ teq. For t1 � teq, the

change is also negligible. We can notice that the time shift itself introduces a smoothing of
the curve but this one is not Tw dependent, contrary to the previous one. Therefore, within the
crude model, the stability curve is easily obtained; it is smoothed but independent of the work
temperature. The magnitude of the decrease is of 1.2% at the maximum.

If we check the lifetime on b1(E ′′
d ) (by determining the time for an ε decrease), we will

see that the demarcation energy value is different from the one predicted with b1(E ′
d) but both

energies correspond in fact to the same time as for the prediction we used E ′
d and for checking

we use E ′′
d containing a time shift. The calculation is thus consistent.
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Figure 11. Effect of the annealing on the activation energy distribution function.
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Figure 12. Lifetime estimate after an annealing treatment using the master curve before annealing
in the case of the corrected model.

In using B(Ed, T ) approach. The function B1(t1, Tw) or b1(t1, Tw) is based on the distribution
function g(E) modified by the annealing treatment: g1(E) in figure 11. In the case of
crude theory, the distribution after annealing is just the distribution function before annealing
truncated at the demarcation energy reached at the end of the annealing treatment and
renormalized. In the correct theory, the distribution function g(E) is modified on its lower
edge by the effect of the annealing (figure 11). Its expression is:

g1(E) = g(E)η(ta, Ta, E)
∫ ∞

0 g(E)η(ta, Ta, E) dE
.

Now, this new distribution function will be ‘read’ at a temperature Tw, the work temperature.
The new practical distribution is thus obtained by convolution of the ‘annealed’ distribution by
the derivation of the decay function − ∂η∗

∂ E∗
∣
∣
T

as described in section 2. The effect, nevertheless,
is here, a priori, more complex than after grating elaboration and has to be addressed.

Let us start as before with the stability curves according to E ′
d. We can assume that the

temperature Tw is significantly lower than Ta and thus that the smoothing introduced by the
convolution at Tw is smaller than the one at Ta. Figure 12 is drawn with this assumption.

The burning in at Ta during time ta decreases B/B0 from 1 to B(ta, Ta)/B0. Then,
we have to commute to the isotherm at Tw for considering a further ageing during lifetime
t1 at this temperature. One difference with the crude case is that now E ′

d(ta, Ta) 
=
E ′

d(teq, Tw). Nevertheless, the procedure remains the same although the equations are a bit
more complicated.
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Figure 13. Construction of the new stability curve after annealing. (a) Reduction of B due
to the annealing at Ta during ta (continuous line) and commutation on Tw curve (dashed line).
(b) Truncated Tw curve after renormalization without considering the smoothing introduced by
the annealing. (c) Real curve (thick continuous line) plotted against old demarcation energy E ′

d
compared to the stability curve before burning in. The thin line is curve (b).

So, we have performed the annealing and we want to check the predicted lifetime. At this
stage, we have to consider that the distribution function is no longer g(E) but g1(E), as noted
above, and that we will measure the stability curve by ‘reading’ at a higher temperature than
the work temperature (accelerated ageing as for the first determination of the stability curve).
Finally, the shape of this curve will be defined both by the annealing temperature Ta and by
the temperature of reading. If we consider the work temperature that is always lower than
Ta, the condition | dg1

dE | � | ∂η

∂ E |t,Tw is fulfilled and the effect of the convolution will be almost
negligible. The stability curve will be thus only defined by the burning in temperature.

Figure 13 shows how to build the new stability curve. The position E ′
d(ta, Ta) in

figure 13(a) shows the point reached by the grating at the end of an annealing. Then, the
grating is cooled down and will be used at Tw. We can thus truncate the Tw stability curve at
E ′

d(teq, Tw) and renormalize by the B value at the end of the annealing (figure 13(b)). Then, we
have to take into account the smoothing introduced by η(ta, Ta, E) (see figure 11).

As can be seen in figure 13(c), the difference between the predicted lifetime from figure 12
or 13(a) and the real one is similar to the one described in figure 8: the real lifetime is shorter
than the one predicted by simple application of the demarcation energy approximation. This
result is due to the fact that the cutting of g(E) is not abrupt (see figure 11). There remains
thus some sites below E ′

d(ta, Ta). Calculations show that the predicted lifetime is twice as small
as the actual lifetime for a decrease of 1%. Knowing this, it is easy to correct the burning in
parameters.

4.3. Time shift with corrected model

In the corrected model, the effect of time shift in the B1 function leads to the same effect as
with b1. This results in a knee on the curve which is relatively more softened but without any
change in the lifetime.

5. Conclusion

In this paper, we have developed a correction to the demarcation energy approximation for
improving the prediction of the lifetime of devices. The correction is based on a convolution
of the physical distribution with a function that introduces back a temperature dependence left
aside by the demarcation energy approximation. This procedure is advantageous only in the
region of the stability curve where the variation of the distribution function is steep, especially
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around the angular points. In the constant or weakly changing slope region of the distribution
function, the crude formula, being more simple, should be used.

The correction procedure we describe here shows that it is possible to use the demarcation
energy approximation and its interesting features such as time–temperature equivalence or
analytic integration of classical distribution functions, except when | dg

dE | � | ∂η

∂ E |t,T . When
this latter is true, it is worthwhile performing the correction by the procedure described in
this paper. This is the case especially for lifetime certification of a Bragg grating written in
hydrogen loaded germanosilicate core optical fibres as the certification of a decrease of less
than 1% during the lifetime falls in the critical region. Our analysis shows that neglecting the
limit of the demarcation energy approximation leads to an overestimate of the lifetime by a
factor of about 2.

Finally, we emphasize that the procedure described in this paper is applicable to other
systems as well for which the activation energy is distributed. There is no restriction to optics
or to a given distribution function.
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